DataLearner 标志DataLearnerAI
AI技术博客
大模型评测排行
大模型评测基准
AI大模型大全
AI资源仓库
AI工具导航

加载中...

DataLearner 标志DataLearner AI

专注大模型评测、数据资源与实践教学的知识平台,持续更新可落地的 AI 能力图谱。

产品

  • 评测榜单
  • 模型对比
  • 数据资源

资源

  • 部署教程
  • 原创内容
  • 工具导航

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner 持续整合行业数据与案例,为科研、企业与开发者提供可靠的大模型情报与实践指南。

隐私政策服务条款
  1. 首页/
  2. 博客/
  3. 标签:统计
标签

「统计」相关文章

汇总「统计」相关的原创 AI 技术文章与大模型实践笔记,持续更新。

标签:#统计
时间序列数据处理中的相关数学概念

时间序列数据处理中的相关数学概念

时间序列数据分析的基础包含大量的统计知识。这篇博客主要用通俗的语言描述时间序列数据中涉及到的一些基本统计知识。

2019/07/09 14:50:203,866
#时间序列数据#统计
回归分析方法之岭回归(Ridge Regression)

回归分析方法之岭回归(Ridge Regression)

2018/09/21 09:30:0121,627
#回归分析#统计
多项式分布的贝叶斯推断

多项式分布的贝叶斯推断

多项式分布是非常常见的分布,他是二项分布在多维上的推广。例如掷骰子结果中,1-6点出现的次数就是一个多项式分布。多项式分布在如主题建模中非常常见,本文将讲述多项式分布的贝叶斯推导过程。

2017/12/01 22:28:466,809
#分布#多项式分布#统计基础
高斯混合模型(GMM)

高斯混合模型(GMM)

高斯混合模型是一个参数概率密度函数,它是一组高斯密度函数的加权求和。在生物统计领域,高斯混合模型通常是连续测度或者特征的概率分布的参数模型。高斯混合模型可以使用迭代的EM算法或者最大后验概率法估计参数。

2017/11/30 15:57:0411,067
#混合模型#统计#高斯混合模型
贝塔分布(Beta Distribution)简介及其应用

贝塔分布(Beta Distribution)简介及其应用

贝塔分布(Beta Distribution)是一个连续的概率分布,它只有两个参数。它最重要的应用是为某项实验的成功概率建模。在本篇博客中,我们使用Beta分布作为描述。

2017/11/08 11:16:1897,201
#BetaDistribution#Beta分布#推断
【转载】变分贝叶斯算法理解与推导

【转载】变分贝叶斯算法理解与推导

变分贝叶斯是一类用于贝叶斯估计和机器学习领域中近似计算复杂(intractable)积分的技术。它主要应用于复杂的统计模型中,这种模型一般包括三类变量:观测变量(observed variables, data),未知参数(parameters)和潜变量(latent variables)。

2017/11/04 09:34:536,992
#变分推断#统计
Wishart分布简介

Wishart分布简介

Wishart分布在多元高斯的贝叶斯推断中非常重要。它通常作为正态分布的协方差矩阵的逆矩阵的共轭先验存在。这篇博客将详细讲述Wishart分布及其作用。

2017/11/04 09:29:4639,959
#Wishart分布#分布#多元正态分布
多元正态(高斯)分布的贝叶斯推导(Bayesian Inference for the Multivariate Normal)

多元正态(高斯)分布的贝叶斯推导(Bayesian Inference for the Multivariate Normal)

多元正态(高斯)分布分布是我们最常用的分布之一,这篇博客的主要内容来自Will Penny的文章的翻译。主要讲述关于多元正态分布的贝叶斯推导

2017/11/04 09:29:3712,460
#多元正态分布#统计
高斯分布的贝叶斯推断总结

高斯分布的贝叶斯推断总结

高斯分布是最常见的分布,也是数据挖掘和人工智能中相关统计学习方法所涉及到的最重要的分布之一。使用贝叶斯理论进行统计推断是目前最流行的推断方式。

2017/11/04 09:25:067,213
#正态分布#统计#高斯分布
如何抽取样本方差的分布

如何抽取样本方差的分布

抽取样本方差的分布可以帮助我们生成很多其他分布的样本,例如生成一元高斯分布的样本就是可以通过方差分布来产生。这篇博客将描述如何抽取样本方差的分布。

2017/10/20 15:43:116,647
#抽样#数学#方差
矩母函数简介(Moment-generating function)

矩母函数简介(Moment-generating function)

在统计学中,矩母函数是一个关于随机变量的实值函数,它可以替代密度函数来描述分布。也就是说,出了概率密度函数外,我们也可以通过矩母函数来描述分布。

2017/10/20 11:44:1864,213
#分布#统计
贝叶斯统计中的一些基本的概念和方法介绍

贝叶斯统计中的一些基本的概念和方法介绍

贝叶斯统计非常有用,也有一些基本的概念。这篇博客介绍了各种分布/概率的相关概念,并做了简单的介绍。

2017/06/19 16:00:4513,570
#统计#贝叶斯
吉布斯抽样的一个简单理解

吉布斯抽样的一个简单理解

吉布斯抽样是贝叶斯推断中非常常用的方法。本文来自Cross Validated中一个人的回答。

2017/06/13 21:35:538,113
#抽样#统计#贝叶斯
层次狄利克雷过程(Hierarchical Dirichlet Processes)

层次狄利克雷过程(Hierarchical Dirichlet Processes)

Dirichlet过程是一种重要的非参数模型,它可运用在聚类中,自动发现类别的数量。但很多时候,我们的工作都是具有层次话的。这篇文章介绍的层次狄利克雷模型就是解决这样的问题的。

2017/02/27 10:24:5318,197
#DPMM#HDP#统计
Dirichlet Tree Distribution(狄利克雷树分布)

Dirichlet Tree Distribution(狄利克雷树分布)

狄利克雷分布作为多项式分布的先验大家应该比较熟悉了。这里介绍另外一种Dirichlet树结构的分布,也可以作为多项式分布的先验,但却更加灵活

2017/02/06 21:17:005,737
#Dirichlet#分布#统计基础
EM算法简介及其例子

EM算法简介及其例子

EM(expectation-maximization)算法是统计学中求统计模型的最大似然和最大后验参数估计的一种迭代式算法,模型一般是依赖于不可观测的潜在变量。

2017/02/06 21:16:2810,920
#EM#参数估计#统计推断
多元高斯分布(多元正态分布)简介

多元高斯分布(多元正态分布)简介

高斯分布是一种非常常见的分布,对于一元高斯分布我们比较熟悉,对于高斯分布的多元形式有很多人不太理解。这篇博客的材料主要来源Andrew Ng在斯坦福机器学习课的材料。

2017-01-28 23:02:4336,769
#正态分布#统计基础#高斯分布
贝叶斯统计中的计算方法简介

贝叶斯统计中的计算方法简介

仿真抽样是给予贝叶斯方法第二春的重要角色。由于很多时候实际问题很复杂,我们无法精确求出后验密度,使用仿真抽样的方法我们可以获得近似的结果。这篇博客主要介绍了几种仿真抽样的方法。

2016-12-28 20:05:216,743
#MCMC#仿真#抽样方法
层次贝叶斯模型(一) 之 构建参数化的先验分布

层次贝叶斯模型(一) 之 构建参数化的先验分布

这个系列的博客来自于 Bayesian Data Analysis, Third Edition. By. Andrew Gelman. etl. 的第五章的翻译。实际中,简单的非层次模型可能并不适合层次数据:在很少的参数情况下,它们并不能准确适配大规模数据集,然而,过多的参数则可能导致过拟合的问题。相反,层次模型有足够的参数来拟合数据,同时使用总体分布将参数的依赖结构化,从而避免过拟合问题。

2016-04-07 08:19:1319,243
#层次模型#统计推断#贝叶斯模型
机器学习中的高斯过程

机器学习中的高斯过程

关于高斯过程,其实网上已经有很多中文博客的介绍了。但是很多中文博客排版实在是太难看了,而且很多内容介绍也不太全面,搞得有点云里雾里的。因此,我想自己发表一个相关的内容,大多数内容来自于英文维基百科和几篇文章。

2016-04-07 08:14:0121,454
#机器学习#统计#非参数模型
层次贝叶斯模型(三) 之 共轭层次模型的完整贝叶斯分析

层次贝叶斯模型(三) 之 共轭层次模型的完整贝叶斯分析

我们对层次贝叶斯推断的策略与一般的多参数问题一样,但由于在实际中层次模型的参数很多,所以比较困难。在实际中,我们很难画出联合后验概率分布的图形。但是,我们可以使用近似的基于仿真的方法。 在这个部分,我们提出一个联合了分析的和数值的方法从联合后验分布p(θ, φ|y)中获取仿真结果,以 小鼠肿瘤实验的beta-binormial模型为例,总体分布是p(θ|φ),与似然函数p(y|θ)是共轭的。对于很多非共轭层次模型,更高级的算法将在后面叙述。即使针对更复杂的问题,使用共轭分布来获取近似估计也是很有用的。

2016-04-03 17:15:488,435
#层次模型#统计推断#贝叶斯
层次贝叶斯模型(二) 之 互换性和建立层次模型

层次贝叶斯模型(二) 之 互换性和建立层次模型

这个系列的博客来自于 Bayesian Data Analysis, Third Edition. By. Andrew Gelman. etl. 的第五章的翻译。实际中,简单的非层次模型可能并不适合层次数据:在很少的参数情况下,它们并不能准确适配大规 模数据集,然而,过多的参数则可能导致过拟合的问题。相反,层次模型有足够的参数来拟合数据,同 时使用总体分布将参数的依赖结构化,从而避免过拟合问题。本节将讲述互换性并建立层次模型

2016-04-03 17:15:437,859
#层次模型#统计推断#贝叶斯
12
下一页

专题合集

RAG(检索增强生成)Long Context 长上下文AI Agent 实践

今日推荐

缺少有标注的数据集吗?福音来了——HuggingFace发布few-shot神器SetFit《Effective Java 第三版》笔记之七 消除过期的对象引用亚马逊近线性大规模模型训练加速库MiCS来了!好东西!Transformer入门神作手把手按行实现Transformer教程The Annotated Transformer2022版本来袭总结一下截止2023年中旬全球主要厂商拥有的GPU数量以及训练GPT-3/LLaMA2所需要的GPU数量网络爬虫原理重磅!MetaAI开源Llama4系列,全面进入MoE架构时代,本次发布Llama4 Scout和Llama4 Maverick,1000万上下文输入,170亿激活参数,不支持中文!数学推理能力超过ChatGPT-3.5:微软与中科院研究人员合作最新的开源大模型WizardMath发布!开源模型第一,免费商用授权!指数分布族(Exponential Family)相关公式推导及在变分推断中的应用深度学习中为什么要使用Batch Normalization

最热博客

1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)2回归模型中的交互项简介(Interactions in Regression)3贝塔分布(Beta Distribution)简介及其应用4矩母函数简介(Moment-generating function)5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程6使用R语言进行K-means聚类并分析结果7深度学习技巧之Early Stopping(早停法)8H5文件简介和使用9手把手教你本地部署清华大学的ChatGLM-6B模型——Windows+6GB显卡本地部署10Wishart分布简介