
大模型工具使用的三次进化:从 Function Calling 到程序化编排
本文系统梳理了大模型工具使用(Tool Use)的三个演进阶段:循环式工具选择(Function Calling)、计划驱动执行(Plan-then-Execute)和程序化工具编排(Programmatic Tool Calling)。从 OpenAI Function Calling 的单次调用模式,到支持并行调度的计划-执行范式,再到最新的代码驱动编排方式,工具使用正在从"逐步决策"走向"计划驱动、代码驱动"。
加载中...

本文系统梳理了大模型工具使用(Tool Use)的三个演进阶段:循环式工具选择(Function Calling)、计划驱动执行(Plan-then-Execute)和程序化工具编排(Programmatic Tool Calling)。从 OpenAI Function Calling 的单次调用模式,到支持并行调度的计划-执行范式,再到最新的代码驱动编排方式,工具使用正在从"逐步决策"走向"计划驱动、代码驱动"。

AI Agent 的一个关键趋势正在浮现:从“快速回答问题”转向“长时间稳定执行复杂任务”。本文系统梳理了为什么 Anthropic、OpenAI 等企业开始强调“长时运行 Agent”,并解释其真实含义并非模型一直思考,而是通过作业化、异步执行、可恢复运行和动态上下文管理,实现跨会话完成复杂目标。文章深入对比了长时 Agent 与传统脚本化 LLM Loop 的本质差异,分析其在自治能力、上下文工程、耐久执行与治理上的核心价值,并总结构建长时运行 AI Agent 所需的关键技术等。

本文基于 Manus 一线工程成员的真实实践,总结并分析了 大模型时代 AI 产品在工程与复用层面发生的关键变化。文章并不关注模型参数或算法细节,而是聚焦于真实生产环境中的工程问题:功能交付的责任边界如何变化、为何原型验证比完整规划更重要,以及在 Agent 系统中个人角色与系统边界如何被重新定义。这些经验揭示了一个趋势——在大模型具备“执行能力”之后,AI 产品的可用性越来越依赖工程体系本身,而非模型能力本身。本文适合关注 AI 工程实践、Agent 架构以及大模型落地问题的技术读者参考。

就在昨天,Anthropic 发布了一套非常重要的工程方案,专门针对这些挑战而设计:基于“Initializer Agent + Coding Agent”的双 Agent 架构。

11 月 13 日,SimilarWeb 发布了最新的 GenAI 访问流量分布。从数据走势可以明显看到,大模型行业正在经历从“ChatGPT 绝对统治”向“多极竞争”的结构性转变。 一年前,ChatGPT 占据了超过 86% 的流量份额,整个行业几乎处于单中心状态。然而在过去的 12 个月里,大模型的多样化发展、不同厂商的产品升级、企业用户需求变化,都推动了新一轮的流量重分配。

2025 年 11 月 13 日,OpenAI 团队在 Reddit 上进行了一场针对 GPT-5.1、模型自定义能力、开发者 API、未来路线图 的公开 AMA(Ask Me Anything)。这次交流并不是简单的功能答疑,而是罕见地从内部视角解释了他们如何思考安全策略、模型行为塑形、推理模式优化、人格定制逻辑、多模态进展以及实际工程实现细节。

OpenAI 于 2025 年 11 月正式发布 GPT-5 系列的阶段性更新版本 —— GPT-5.1。这一更新并非针对模型架构的全面重做,而是围绕“对话体验、一致性、任务适配性”进行的系统化优化。在 GPT-5 推出后,业界对其不稳定回复、语气波动、任务深度控制不足等表现提出了不少批评,因此本次更新可视为 OpenAI 对这些问题的集中调整。

BrowseComp是一个用于评估AI代理网页浏览能力的基准测试。它包含1266个问题,这些问题要求代理在互联网上导航以查找难以发现的信息。该基准关注代理在处理多跳事实和纠缠信息时的持久性和创造性。OpenAI于2025年4月10日发布此基准,并将其开源在GitHub仓库中。

Anthropic正式发布最新一代入门级模型Claude Haiku 4.5。相较上一代小模型,Haiku 4.5 在编码、推理与“计算机使用/子代理编排”等关键生产力场景上实现逼近甚至局部追平 Sonnet 4,但价格更低、速度更快,定位于“面向规模化落地的高性价比主力”。

Anthropic 正式推出全新功能 Claude Skills,旨在让通用 AI 代理(Agent)具备专业领域能力。该功能允许用户通过创建包含 SKILL.md 文件的技能文件夹,为 Claude 注入可执行脚本、模板与资源,实现 Excel 处理、PPT 生成等特定任务的自动化操作。与传统提示词不同,Skills 采用结构化加载与本地沙箱执行机制,兼顾安全性与效率。

就在昨天,2025年10月7日,Google DeepMind 正式发布其最新模型——Gemini 2.5 Computer Use。该模型基于 Gemini 2.5 Pro 的视觉理解与推理能力,新增了“界面交互(UI 控制)”能力,能够在浏览器或移动端界面上像人类那样点击、输入、滚动、选择控件等操作。

就在今日,OpenAI正式推出了 Sora 2 ——其旗舰级视频与音频生成模型。相比2024年2月发布的初代 Sora,本次升级带来了断层级的真实感与显著增强的可控性。它不仅能更好地遵循物理规律生成视频,还首次实现了同步对话与环境音效的生成,并通过全新 iOS 应用“Sora”开放给公众使用。

智谱AI于2025年7月发布了Zread。这款产品能够利用其大模型能力,结合类似Deep Research的Agent技术,对GitHub项目进行深度解读和问答。其价值在于将强大的模型能力通过优秀的工程化设计,变成了一个真正“好用”的工具。它解决的正是那种“代码就在那里,但我就是看不懂”的尴尬,这种体验是单纯聊天机器人无法替代的。

根据TheInformaiton的披露,近期OpenAI更新了他们最新财务预测(截至2025年第三季度)。这份收入预测展示了当前OpenAI的收入情况,并描绘了一幅引人注目的未来图景。与2025年第一季度OpenAI自己的预测相比,新数据不仅上调了收入预期,也揭示了公司因基础设施投入而面临的巨大现金消耗压力。本文将简单解读一下这份数据,包括OpenAI的收入情况,不同产品占比,如ChatGPT的比重等。

今日,Moonshot AI正式发布了最新旗舰模型 Kimi K2-Instruct-0905。这是一款基于混合专家架构(MoE)的前沿大语言模型,总参数规模达到 1万亿,激活参数为 320亿,不仅在编码智能上实现了断层式提升,更凭借 256K超长上下文 成为当前同类产品中的佼佼者。官方称其在公共基准和真实智能体任务上的表现均有显著突破,已对标并超越部分国际顶尖模型。

就在几个小时前,OpenAI 发布了全新的 GPT Realtime 大模型。这是一个 Speech-to-Speech(S2S)模型,能通过单个模型与 API完成从音频输入到音频输出的全流程,显著降低交互延迟并充分保留语音细节。 GPT Realtime 以“端到端语音理解—推理—合成”为核心路径,解决了传统“识别—推理—合成”多阶段带来的延迟与风格割裂问题。

就在几个小时前,DeepSeekAI宣布官方的聊天模型从DeepSeek-V3升级到了DeepSeek-V3.1,上下文拓展至128K。虽然,官方目前没有给出这个模型的详细信息,DataLearnerAI已经搜集到很多信息供大家参考。

智谱AI刚刚开源了新一代视觉-语言模型(Vision-Language Model, VLM)——GLM-4.5V。该模型基于其旗舰文本基础模型GLM-4.5-Air(总参数量1060亿,激活参数量120亿),延续GLM-4.1V-Thinking的技术路线,在42项公开视觉多模态基准测试中,在同规模模型中实现领先性能。GLM-4.5V面向图像、视频、文档理解以及GUI任务等常见多模态场景,采用Mixture-of-Experts(MoE)架构,并保持开源。

阿里巴巴的 Qwen Code 是一款开源的命令行 AI 工具,旨在提升开发者的编程效率,特别适用于处理大型代码库和复杂的开发任务。 2025年8月9日,阿里宣布提供每天2000次的免费Qwen Code服务,应该是满足大多数开发者的日常需求了。

几个小时前,OpenAI发布了全新一代大模型GPT-5系列。本次发布的是一个全新的AI系统,而非一个单独的模型系列。GPT-5背后包含了5个不同的模型系列或者版本,分别是GPT-5-Pro、GPT-5、GPT-5-mini、GPT-5-nano和GPT-5-Chat。

近日,OpenAI在发布其开源模型gpt-oss-120b和gpt-oss-20b的同时,也推出了一种专为这些模型设计的全新消息格式——Harmony。对于希望在自有解决方案中充分利用这些开源模型的开发者而言,理解Harmony至关重要。本文将以客观的第三方视角,详细解析Harmony格式的设计理念与技术细节。

在几个小时前,OpenAI开源了两款名为gpt-oss-120b和gpt-oss-20b的大语言模型。这是自GPT-2以来,OpenAI首次推出开源权重大语言模型,这两个模型的评测效果达到了o4-mini和o3-mini的水平,而且以Apache 2.0协议开源,大家可以自由使用,包括任何形式的商用。

Terminal-Bench是一个新兴的开源基准测试,专为评估人工智能Agent(AI Agent)在命令行终端环境中的实际操作能力而设计。它通过一系列模拟真实世界场景的复杂任务,旨在客观、可量化地衡量AI Agent在执行代码编译、服务器管理和数据处理等任务时的熟练程度与自主性。

几个小时前,OpenAI的研究人员披露,其一款内部实验性的大语言模型,在模拟的国际数学奥林匹克(International Math Olympiad ,IMO)竞赛2025中取得了金牌水平的成绩。这是一个里程碑式的突破,因为IMO被认为是衡量创造性数学推理能力的巅峰,远超以往任何AI基准测试。这项成就并非通过专门针对数学的“窄”方法实现,而是源于通用人工智能研究的根本性突破,尤其是在处理难以验证的任务和长时间推理方面。