大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
当前的大模型的参数规模较大,数以千亿的参数导致了它们的预训练结果文件都在几十GB甚至是几百GB,这不仅导致其使用成本很高,在不同平台进行交换也非常困难。因此,大模型预训练结果文件的保存格式对于模型的使用和生态的发展来说极其重要。昨天HuggingFace官方宣布将推动GGUF格式的大模型文件在HuggingFace上的使用。
在本周,HuggingFace最流行的十个大模型多模态模型占了4个,包括StabilityAI最新开源的文本生成视频大模型Stable Video Diffusion、Coqui最新的语音合成大模型XTTS第二代等都吸引了大量的关注多。而大语言模型中,谷歌开源了2022年就已经发布的Switch大模型,该模型号称参数可以达到上万亿,也是十分有意思。
语音识别在实际应用中有非常多的应用。早先,OpenAI发布的Whisper模型是目前语音识别模型中最受关注的一类,也很可能是目前ChatGPT客户端语音识别背后的模型。HuggingFace基于Whisper训练并开源了一个全新的Distil-Whisper,它比Whisper-v2速度快6倍,参数小49%,而实际效果几乎没有区别。
RWKV是一个结合了RNN与Transformer双重优点的模型架构。由香港大学物理系毕业的彭博首次提出。简单来说,RWKV是一个RNN架构的模型,但是可以像transformer一样高效训练。今天,HuggingFace官方宣布在transformers库中首次引入RNN这样的模型,足见RWKV模型的价值。
Hugging Face一直在努力支持深度学习,但是,这只是深度学习的一部分。传统统计机器学习领域里面最重要的工具Scikit-learn如今终于和深度学习的开源标杆工具Hugging Face联手。
就在儿童节前一天,Hugging Face发布了一个最新的深度学习模型评估库Evaluate。对于机器学习模型而言,评估是最重要的一个方面。但是Hugging Face认为当前模型评估方面非常分散且没有很好的文档。导致评估十分困难。因此,Hugging Face发布了这样一个Python的库,用以简化大家评估的步骤与时间。
使用kaggle房价预测的实例说明预测算法中OneHotEncoder、LabelEncoder与OrdinalEncoder的使用及其差异
微软开源最强38亿小规模参数大语言模型以及56亿参数规模全模态大模型,但是总体评测结果超过Qwen2.5-7B以及Llama3.1-8B等模型,接近GPT-4o mini。
重磅!ChatGPT加入多模态能力,可以听语音、生成语音并理解图片了!
正则化和数据增强对模型的影响并不总是好的:The Effects of Regularization and Data Augmentation are Class Dependent
线性数据结构之跳跃列表(Skip List)详解及其Java实现
扩散模型是如何工作的:从0开始的数学原理——How diffusion models work: the math from scratch
为什么最新的大语言模型(如ChatGPT)都使用强化学习来做微调(finetuning)?