大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
决定向量检索准确性的核心是向量大模型的能力,即文本转成embedding向量是否准确。今天,OpenAI宣布了他们第三代向量大模型text-embedding,模型能力增强的同时价格下降!
Embedding模型作为大语言模型(Large Language Model,LLM)的一个重要辅助,是很多LLM应用必不可少的部分。但是,现实中开源的Emebdding模型却很少。最近,北京智源人工智能研究院(BAAI)开源了BGE系列Embedding模型,不仅在MTEB排行榜中登顶冠军,还是免费商用授权的大模型,支持中文,应该可以满足相当多人的需要。
文本embedding是当前大模型应用中一个十分重要的角色。在长上下文支持、私有数据问答等方面有非常重要的应用。但是相比较开源领域快速发布的大模型节奏,开源的embedding模型和数据却非常少。今天,GPT4All宣布在其软件中增加embedding的支持,这是一个完全免费且可商用的产品,最重要的是可以在我们本地用CPU来做推理。
今天,一位年仅20岁的小哥willdepue 开源了230万arXiv论文的标题和摘要的embedding向量数据集,完全开源。该数据集包含截止2023年5月4日的所有arXiv上的论文标题和摘要的embedding结果,使用的是开源的Instructor XL抽取。未来将开放更多其它相关数据的embedding结果
今天,推特上一位科技博主SullyOmarr分享了一个关于embedding的内容十分火爆。主要介绍为什么embedding对于在目前的AI大模型中很重要。这是一个十分不错的关于embedding知识的介绍。本文将根据SullyOmarr的内容也对embedding做一个简单的介绍,并解释为什么它在大语言模型中十分重要。
嵌入(Embedding)是深度学习方法处理自然语言文本最重要的方式之一。它将人类的自然语言和文本转换成一个浮点型的向量。向量之间的距离代表了它们的关系。今天,OpenAI宣布了他们的Embedding新模型——text-embedding-ada-002。官方宣称这是目前OpenAI最强的嵌入模型,可以将任意文本转换成一个向量,且效果好于目前所有OpenAI的模型。
缺少有标注的数据集吗?福音来了——HuggingFace发布few-shot神器SetFit
A21 Labs宣布开源520亿参数的全新混合专家大模型(Mixture of Experts,MoE)Jamba:单个GPU的上下文长度是Mixtral 8x7B的三倍
月之暗面开源了一个全新的160亿参数规模的MoE大语言模型Moonlight-16B:其训练算力仅需业界主流的一半
CohereAI开源了2个Aya Vision多模态大模型:80亿和320亿两种规格多模态大模型,评测结果超越Qwen2.5 72B和Llama 3.2 90B,支持23种语言
MetaAI官宣开源编程大模型CodeLLaMA!基于LLaMA2微调!超越OpenAI的Codex,最高支持10万tokens输入!
重磅Llama3即将发布!目前已知有80亿和700亿参数两个版本,其中Llama3-8B-Instruct已经上架微软云服务市场!
如何用7.7亿参数的蒸馏模型超过5400亿的大语言模型——Google提出新的模型蒸馏方法:逐步蒸馏(Distilling step-by-step)详解