大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
异质表格数据是最常用的数据形式,对于众多关键和计算要求高的应用来说是必不可少的。在同质数据集上,深度神经网络已多次显示出优异的性能,因此被广泛采用。然而,它们在表格数据建模(推理或生成)方面的应用仍然具有高度挑战性。
Firebolt开发了一个数据工程师的网页小游戏,带你体验数据分析的全流程。游戏里你扮演一个数据工程师,从数据收集开始,经历数据pipeline、数据入数据湖以及数据分析等,最终形成各种图表的结果。
FT1000是金融时报评选的欧洲增长速度最快的前1000个公司,这个名单可以看出来过去几年欧洲哪些企业增长较快,它们在哪些行业经营等。2022年的榜单也刚刚发布,让我们一睹为快。
大家都知道,编程的开发离不开互联网的支持,不管是编程的学习还是bug的修复,都需要社区和外部的支持。因此,我们全新开通了一个程序必备网站列表栏目,为大家提供一站式访问目录。也欢迎评论,大家可以说一下你们写代码时候喜欢用的网站,我们也会更新上去。在这里我们挑选几个必备网站简单介绍一下。
Anubis是一个分布式LMS(学习管理系统),由John Cunniff创建,专门为CS课程的自动化而设计。Anubis已经在纽约大学坦登分校使用并经过了几个学期的测试。这个系统的主要目的是自动为提交的作业评分,并提供了一个云IDE解决方案,以简化学生的体验。
CVPR2022的一篇论文带来了一个39亿参数的自回归图像模型公开了他们的代码和论文。
最近几年,数据的重要性在各个领域都获得了巨大的重视。因此,数据管理相关的业务也成为各项基础设施中增长最快的业务,目前的市场规模约700亿美元,占所有企业的基础设施支持约1/5。仅在2021年,数据处理相关的公司获得了数百亿的风险投资。为此,Future总结了2022年全球最大的50家数据创业企业。这里我们列举其中的最大的10个进行介绍。
前几天,北京智源人工智能研究院引入了一个名为WuDaoMM的大规模多模态语料库,总共包含超过6.5亿对图像-文本。具体来说,约有6亿对数据是从图像和标题呈现弱相关的多个网页中收集的,另外5000万对强相关的图像-文本是从一些高质量的图片网站中收集的。
人工智能指数是斯坦福大学以人为本人工智能研究所(Stanford Institute for Human-Centered Artificial Intelligence (HAI))联合学术界、工业界的专家一起发布的人工智能相关的发展报告。2022年度AI指数报告在近几日发布。
OpenAI在3月15日发布了一个最新的GPT-3和Codex的版本,这个版本最大的能力就是可以在已有的文本上插入或者编辑新的内容。而不是续写已有的文本。这个能力最大的应用就是重写已有文本,或者用来重构代码。
去年5月份的时候,Python创始人Guido van Rossum在参加Language Summit时候说他希望Python3.11能在性能上获得巨大的提升,可以实现性能翻倍。目前看,似乎已经有了很大的希望!
这几天逛reddit的时候发现了一个很有意思的讨论,有个童鞋说他在GitHub上提交代码的时候发现了提交文件被提示有一个红色警告的提示,鼠标移动上去会告诉你“No newline at end of file”(也就是文件末尾没有换行)。因此,他很奇怪,他不懂为什么GitHub要求文件的末尾必须有换行符。这个问题引起了很多的讨论。这里我也顺便记录共享一下。
在程序设计和编程中,我们经常会看到关于时间复杂度的讨论。比如为什么A方法比B方法好?是因为A方法的时间复杂度低。那么,这里的时间复杂度如何去理解,又怎么计算呢?常见的O(n)的含义是什么?本文将简单的解释这个概念。
深度学习模型训练将训练批次(batch)设置为2的指数是否有实际价值?
OpenAI发布的GPT-4o能力总结,数学推理能力超过所有模型,价格下降一半!
康奈尔大学发布可以在一张消费级显卡上微调650亿参数规模大模型的框架:LLMTune
重磅!苹果官方发布大模型框架:一个可以充分利用苹果统一内存的新的大模型框架MLX,你的MacBook可以一键运行LLaMA了
层次狄利克雷过程(Hierarchical Dirichlet Processes)
为什么Python可以处理任意长度的整数运算——Python原理详解