大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~
CMU的工程人工智能硕士学位的研究生Jean de Nyandwi近期发表了一篇博客,详细介绍了当前大语言模型主流架构Transformer的历史发展和当前现状。这篇博客非常长,超过了1万字,20多个图,涵盖了Transformer之前的架构和发展。此外,这篇长篇介绍里面的公式内容并不多,所以对于害怕数学的童鞋来说也是十分不错。本文是其翻译版本,欢迎大家仔细学习。
作为PaLM的继任者,PaLM2的发布被谷歌寄予厚望。与OpenAI类似,谷歌官方没有透露很多关于模型的技术细节,虽然发布了一个92页的技术报告,但是,正文内容仅仅27页,引用和作者14页,剩余51页都是展示大量的测试结果。而前面的27页内容中也没有过多的细节描述。尽管如此,这里面依然有几个十分重要的结论供大家参考。
今天,Meta的首席AI科学家Yann LeCun在推特上宣布了MetaAI的最新研究成果:MMS,一个支持1107种语言的自动语音识别模型和语音合成模型,该模型自动语音识别的单词错误率只有OpenAI开源的Whisper的一半!但是支持的语言却有1107种,是Whisper的11倍!代码与预训练结果已开源,不过不可以商用哦~
GPT-4 Turbo是OpenAI最新发布的号称性能超过当前GPT-4的模型。在新版本的ChatGPT中已经可以使用。而接口也在开放。除了速度和质量外,GPT-4 Turbo最吸引人的是支持128K超长上下文输入。但是,实际测试中GPT-4 Turbo对于超过73K tokens文档的理解能力急速下降。
五一长假最后一天,AI技术的发展依然火热。今天有2个重磅的开源模型发布:一个是前几天提到的Replit的代码补全大模型Replit Code V1 3B,一个是UC Berkeley的博士生Hao Liu发起的一个开源LLaMA复刻项目。
大模型应用中一个非常重要的问题就是大模型的响应速度。尤其是作为聊天应用来说,在用户输入之后,大模型可以在多短的时间内给出回应对于用户体验来说影响巨大。这里有2个问题经常会被大家所关注,一个是大模型每秒输出多少个tokens就可以满足用户的日常聊天使用,另一个问题是单张显卡最多可以支撑多少个用户的聊天需求。在前几天的vllm meetup上,贾扬清给出了一些讨论,他认为我们目前可能高估了大模型的聊天应用成本。
华为盘古大模型一直是国内大模型领域比较早的先行者,不过由于该模型并不针对个人开放,因此很少有人可以体验到该模型的效果。但是,盘古大模型一直在不断发展。2023年7月27日,华为发布最新的论文,展示了新一代盘古大模型的编程能力。该模型名字为PanGu-Coder2,论文的数据显示该模型目前超越所有开源编程大模型的效果,也超过GPT-3.5,接近GPT-4。
Python最新正式版本3.10在10月4日已经发布。这个版本从2020年5月开始开发,经历差不多一年半的时间终于正式发布。当然每一个新版本都有很多新功能。我们将持续关注新功能,在这篇文章中,我们将简述3.10中新功能中的语法——结构模式匹配(structural pattern matching)。
Google旗下自动驾驶公司Waymo的研究人员Mingxing Tan发现了一个可以替代Cross-Entropy Loss的新的损失函数:PolyLoss,这是发表在ICLR 22的一篇新论文。什么都不变的情况下,只需要将损失函数的代码替换成PolyLoss,那么模型在图像分类、图像检测等任务的性能就会有很好的提升!
虽然最近一段时间大模型十分火爆,但是传统的推荐依然是当前很多业务的核心能力,就在几个小时前,Twitter官方开源了自己的推荐系统,并详细介绍了它们的推荐算法。本文将简单介绍一下推特的推荐算法和架构!
今天, Analytics India Magazine披露了说ChatGPT每天的运行成本70万美元左右,以及七月份ChatGPT月活人数也环比上月降低2亿,只剩15亿用户左右。而硅谷著名风投A16Z(Andreessen Horowitz)也透露了一些OpenAI的数据我们可以一起看看。
C/C++的源程序文件都是程序员按照相关语法和规则编写的。但是这样的程序文件并不能直接被硬件识别和执行。本文将简要描述C/C++的源代码是如何经过转化并最终转变成可以被硬件识别执行的二进制文件的。
今天,MetaAI发布了一个新的语音处理领域的生成式大模型Voicebox,可以像GPT那样用生成式的方式处理语音(speech)数据的相关任务,包括语音编辑、跨风格语音生成等语音数据处理相关的很多任务。这可能就是语音处理领域的GPT时刻!