仙宫云4090显卡租赁

大模型的发展速度很快,对于需要学习部署使用大模型的人来说,显卡是一个必不可少的资源。使用公有云租用显卡对于初学者和技术验证来说成本很划算。DataLearnerAI在此推荐一个国内的合法的按分钟计费的4090显卡公有云服务提供商仙宫云,可以按分钟租用24GB显存的4090显卡公有云实例,非常具有吸引力~

Card image cap
检索增强生成(RAG)

大模型检索增强生成是一种结合了大规模语言模型的自动生成能力和针对特定数据的检索机制,以提供更准确、信息丰富的输出内容的技术。

查看RAG合集
Card image cap
Long Context

大模型对长上下文的处理能力在于它们能够理解和维持较长篇幅的文本连贯性,有助于提升质量,以及对复杂问题和讨论的理解和回应质量。

LongContext合集
Card image cap
AI Agent

大模型的AI Agent是一种高级智能系统,能够理解复杂的指令和查询,并以人类般的方式生成响应、执行任务或提供决策支持。

AI Agent合集
JCR期刊中的ESCI是什么?它属于SCI索引吗?

很多童鞋在查询期刊的时候会发现某些期刊不是SCI(SCIE)索引,而是一个叫ESCI的索引。这似乎有点像SCI,但好像又有区别,所以大家会有疑问,本篇博客将解释二者的区别。

2022/04/18 19:41:09
pandas的get_dummies方法在机器学习中的应用及其陷阱

pandas.get_dummies是pandas中一种非常高效的方法。它最主要的作用是可以将分类变量转变成dummy变量,也就是虚拟变量。这篇博客将简要的介绍一下pandas.get_dummies()方法,并描述其在机器学习中的应用的一些注意事项。

2021/11/17 22:33:14
大语言模型的指令微调(Instruction Tuning)最全综述:从数据集到技术全解析

当前的大语言模型主要是预训练大模型,在大规模无监督数据上训练之后,再经过有监督微调和对齐之后就可以完成很多任务。尽管如此,面对垂直领域的应用,大模型依然需要微调才能获得更好地应用结果。而大模型的微调有很多方式,包括指令微调、有监督微调、提示工程等。其中,指令微调(Instruction Tuning)作为改进模型可控性最重要的一类方法,缺少深入的研究。浙江大学研究人员联合Shannon AI等单位发布了一篇最新的关于指令微调的综述,详细描述指令微调的各方面内容。

2023/08/28 15:22:05
指数分布族(Exponential Family)相关公式推导及在变分推断中的应用

指数分布族(Exponential Family)相关公式推导及在变分推断中的应用

2019/02/14 15:46:10
如何估计大模型推理或者训练所需要的显存大小?HuggingFace官方工具Model Memory Calculator,一键计算大模型显存需求~

大模型对显卡资源的消耗是很大的。但是,具体每个模型消耗多少显存,需要多少资源大模型才能比较好的运行是很多人关心的问题。此前,DataLearner曾经从理论上给出了大模型显存需求的估算逻辑,详细说明了大模型在预训练阶段、微调阶段和推理阶段所需的显存资源估计,而HuggingFace的官方库Accelerate直接推出了一个在线大模型显存消耗资源估算工具Model Memory Calculator,直接可以估算在HuggingFace上托管的模型的显存需求。

自然语言处理中常见的10个任务简介及其资源

这篇博客主要介绍了文本预处理的一般步骤以及常见的自然语言处理任务简介。

标签平滑(Label Smoothing)——分类问题中错误标注的一种解决方法

在2016年,Szegedy等人提出了inception v2的模型(论文:Rethinking the inception architecture for computer vision.)。其中提到了Label Smoothing技术,可以提高模型效果。

2019/06/25 17:27:24
多元正态(高斯)分布的贝叶斯推导(Bayesian Inference for the Multivariate Normal)

多元正态(高斯)分布分布是我们最常用的分布之一,这篇博客的主要内容来自Will Penny的文章的翻译。主要讲述关于多元正态分布的贝叶斯推导

2017/11/04 09:29:37
用stata做倾向值分析和匹配

倾向值分析;stata; propensity score matching using stata

2017/11/13 21:45:35
人工智能初创企业Hugging Face是什么样的企业——HuggingFace简介

Hugging Face是一家非常活跃的人工智能创业公司。它拥有一个非常强大并且活跃的人工智能社区。有超过5000多家机构都在Hugging Face的社区发布内容,包括Google AI、Facebook AI、微软等。自从2016年成立以来,这家企业经历了5轮融资,总共募集了6000万美金。本文将简要介绍这家企业相关的信息。

2021/11/10 21:14:59
预训练大语言模型的三种微调技术总结:fine-tuning、parameter-efficient fine-tuning和prompt-tuning

预训练大模型,尤其是大语言模型已经是当前最火热的AI技术。2018年Google发布BERT模型之后,fine-tuning技术也随之流行,即将预训练模型的权重冻结,然后根据具体任务进行微调变得十分有效且被应用在很多场景。而随着ChatGPT的火热,parameter-efficient fine-tuning和prompt-tuning技术似乎也有替代传统fine-tuning的趋势,本篇论文将简单描述预训练模型领域这三种微调技术及其差别。

深度学习之Encoder-Decoder架构

深度学习中Sequence to Sequence (Seq2Seq) 模型的目标是将一个序列转换成另一个序列。包括机器翻译(machine translate)、会话识别(speech recognition)和时间序列预测(time series forcasting)等任务都可以理解成是Seq2Seq任务。RNN(Recurrent Neural Networks)是深度学习中最基本的序列模型。

Python之numpy.argpartition

神秘的numpy.argpartition

2017/10/24 22:07:29
贝叶斯统计中的一些基本的概念和方法介绍

贝叶斯统计非常有用,也有一些基本的概念。这篇博客介绍了各种分布/概率的相关概念,并做了简单的介绍。

2017/06/19 16:00:45
最优化问题的KKT条件简要解释

KKT条件(Karush–Kuhn–Tucker conditions)是求解带不等式约束的最优化问题中非常重要的一个概念和方法。这篇博客将解释相关概念和操作。