DataLearner 标志DataLearnerAI
最新AI资讯
大模型评测
大模型列表
大模型对比
资源中心
AI工具导航

加载中...

DataLearner 标志DataLearner AI

专注大模型评测、数据资源与实践教学的知识平台,持续更新可落地的 AI 能力图谱。

产品

  • 评测榜单
  • 模型对比
  • 数据资源

资源

  • 部署教程
  • 原创内容
  • 工具导航

关于

  • 关于我们
  • 隐私政策
  • 数据收集方法
  • 联系我们

© 2026 DataLearner AI. DataLearner 持续整合行业数据与案例,为科研、企业与开发者提供可靠的大模型情报与实践指南。

隐私政策服务条款
  1. 首页/
  2. 博客/
  3. 标签:RNN
标签

「RNN」相关文章

汇总「RNN」相关的原创 AI 技术文章与大模型实践笔记,持续更新。

标签:#RNN
大语言模型的技术总结系列一:RNN与Transformer架构的区别以及为什么Transformer更好

大语言模型的技术总结系列一:RNN与Transformer架构的区别以及为什么Transformer更好

大语言模型(Large Language Model,LLM)是近几年进展最大的AI模型。早期的深度学习架构语言模型以RNN为主,现在则基本上转成了Transformer的架构。尽管如此,Transformer本身也是有着不同的区别。而本文是大语言模型系列中的一篇,主要介绍RNN模型与Transformer之间的区别。

2023/04/27 22:02:333,274
#LLM#RNN
大语言模型的技术总结系列一:RNN与Transformer架构的区别以及为什么Transformer更好

大语言模型的技术总结系列一:RNN与Transformer架构的区别以及为什么Transformer更好

大语言模型(Large Language Model,LLM)是近几年进展最大的AI模型。早期的深度学习架构语言模型以RNN为主,现在则基本上转成了Transformer的架构。尽管如此,Transformer本身也是有着不同的区别。而本文是大语言模型系列中的一篇,主要介绍RNN模型与Transformer之间的区别。

2023/04/27 22:02:332,692
#LLM#RNN
Seq2Seq的建模解释和Keras中Simple RNN Cell的计算及其代码示例

Seq2Seq的建模解释和Keras中Simple RNN Cell的计算及其代码示例

RNN的应用有很多,尤其是两个RNN组成的Seq2Seq结构,在时序预测、自然语言处理等方面有很大的用处,而每个RNN中一个节点是一个Cell,它是RNN中的基本结构。本文从如何使用RNN建模数据开始,重点解释RNN中Cell的结构,以及Keras中Cell相关的输入输出及其维度。我已经尽量解释了每个变量,但可能也有忽略,因此可能对RNN之前有一定了解的人会更友好,本文最主要的目的是描述Keras中RNNcell的参数以及输入输出的两个注意点。如有问题也欢迎指出,我会进行修改。

2020/07/12 21:25:134,032
#Keras#RNN
深度学习之GRU神经网络

深度学习之GRU神经网络

之前面的博客中,我们已经描述了基本的RNN模型。但是基本的RNN模型有一些缺点难以克服。其中梯度消失问题(Vanishing Gradients)最难以解决。为了解决这个问题,GRU(Gated Recurrent Unit)神经网络应运而生。本篇博客将描述GRU神经网络的工作原理。GRU主要思想来自下面两篇论文:

2019/03/23 15:34:2811,080
#GRU#RNN
深度学习之LSTM模型

深度学习之LSTM模型

在前面的博客中,我们已经介绍了基本的RNN模型和GRU深度学习网络,在这篇博客中,我们将介绍LSTM模型,LSTM全称是Long Short-Time Memory,也是RNN模型的一种。

2019/03/23 15:34:009,738
#LSTM#RNN
深度学习之Attention机制

深度学习之Attention机制

Encoder-Decoder的深度学习架构是目前非常流行的神经网络架构,在许多的任务上都取得了很好的成绩。在之前的博客中,我们也详细介绍了该架构(参见深度学习之Encoder-Decoder架构)。本篇博客将详细讲述Attention机制。

2019/03/21 11:32:026,360
#Attention#RNN
深度学习之Encoder-Decoder架构

深度学习之Encoder-Decoder架构

深度学习中Sequence to Sequence (Seq2Seq) 模型的目标是将一个序列转换成另一个序列。包括机器翻译(machine translate)、会话识别(speech recognition)和时间序列预测(time series forcasting)等任务都可以理解成是Seq2Seq任务。RNN(Recurrent Neural Networks)是深度学习中最基本的序列模型。

2019/03/19 11:19:0413,361
#Encoder-Decoder#RNN
深度学习之RNN模型

深度学习之RNN模型

序列数据是生活中很常见的一种数据,如一句话、一段时间某个广告位的流量、一连串运动视频的截图等。在这些数据中也有着很多数据挖掘的需求。RNN就是解决这类问题的一种深度学习方法。其全称是Recurrent Neural Networks,中文是递归神经网络。主要解决序列数据的数据挖掘问题。

2019/03/15 10:57:1215,658
#RNN#深度学习
[翻译]应用到文本领域的卷积方法

[翻译]应用到文本领域的卷积方法

本文介绍了文本领域的相关任务和技术,探讨了循环神经网络在文本领域的优势,并进一步研究了应用在文本领域的卷积网络方法,原文地址:https://medium.com/@TalPerry/convolutional-methods-for-text-d5260fd5675f

2017/05/27 15:50:255,016
#RNN#卷积神经网络

专题合集

RAG(检索增强生成)Long Context 长上下文AI Agent 实践

最热博客

  • 1Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程)
  • 2回归模型中的交互项简介(Interactions in Regression)
  • 3贝塔分布(Beta Distribution)简介及其应用
  • 4矩母函数简介(Moment-generating function)
  • 5普通最小二乘法(Ordinary Least Squares,OLS)的详细推导过程
  • 6使用R语言进行K-means聚类并分析结果
  • 7深度学习技巧之Early Stopping(早停法)
  • 8手把手教你本地部署清华大学的ChatGLM-6B模型——Windows+6GB显卡本地部署

今日推荐

  • 重磅!来自Google内部AI研究人员的焦虑:We Have No Moat And neither does OpenAI
  • 12倍推理速度提升!Meta AI开源全新的AI推理引擎AITemplate
  • Wishart分布简介
  • 主题模型结合词向量模型(Improving Topic Models with Latent Feature Word Representations)
  • 【计算机硬件知识简介】之CPU指令集
  • 各大企业和机构拥有的NVIDIA A100的GPU显卡数量
  • OpenAI内部通用大模型已经可以拿到国际数学奥利匹克竞赛金牌:AI推理能力已经接近人类顶级水平
OpenAI正在测试一个新的o3模型:o3 alpha模型,实测编码和游戏能力十分突出